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It’s not the encryption 
that’s cryptography. 

It’s the random number generator! 
Inspired by Tom Stoppard: 

It’s not the voting  
that’s democracy. 
It’s the counting! 

Random number generators may be insuffi-
cient by mistake or by intention. That’s why 
the quality of the key establishment protocol 
should not rely on the security of a single 
random number generator. It is demon-
strated on SSL/TLS as a showcase how eas-
ily and efficiently a trapdoor may be imple-
mented.  

SSL/TLS has a great conceptual weakness. The quality of the random number generator in 
the client (browser) is crucial for confidentiality, integrity and authenticity of the SSL/TLS 
connection. This weakness makes SSL/TLS vulnerable to mistakes and to the integration of 
an almost undiscoverable trapdoor. “Almost undiscoverable” means that it could not be 
recognised from outside in a reasonable time. From outside is defined as without any code 
inspection or without any analysis of the code behaviour on the client operating system. 
(The browser is treated as a black box). In this paper an example is presented how such a 
trapdoor can be efficiently integrated.  

A random number generator may be insufficient by mistake or by intention (trapdoor). 
However the reason may be for this insufficiency makes it obvious to ask for a new re-
quirement in cryptographic protocols: “The security of a key agreement protocol should not 
rely on the quality of a single random number generator. ”This requirement, that is not es-
tablished in the security community and in literature, would have an impact to many imple-
mented cryptographic protocols. 

SSL/TLS an Overview 

Here in brief and much simplified how the SSL/TLS handshake works (for additional in-
formation see the IETF standards): 

1. Agreement on a secret key K. 

2. From K the session keys for encryption and integrity checks are evaluated.  

3. Exchange of control messages to verify if the server and the client have derived 
the same session keys.  

4. Exchange of data between the server and the client.  

For this purpose only phase 1 and 2 are of importance. The agreement can be done by a 
RSA encryption with the server public key from its certificate or with a Diffie-Hellman key 



exchange and a server signature. For the key establishment it is completely irrelevant if the 
server will authenticate the client during phase 1 or not! 

Principle of the Trapdoor 

What is encrypted by RSA (M) or is the Diffie-Hellman private key (C) during the SSL/TLS 
handshake looks to everyone as generated “randomly”. But it is done in an almost predict-
able way for an external third man (named Carl) who listens to the SSL/TLS connection.  

To realize that random information sent in plaintext during SSL/TLS phase 1 are taken as an 
input of a function F to generate the bits of M or C. The function F and its input parameters 
have to be kept secret between the SW developer of the browser and Carl.  

RSA Encryption 

The parameters for the key establishment in SSL/TLS are: 

RAC: 28 Byte randomly generated by the client and sent to the server.  

RAS: 28 Byte randomly generated by the server and sent to the client.  

M: 46 Byte randomly generated by the client. M is encrypted with the server pub-
lic key S of its certificate. => ES(M) is sent to the server.  

From M, RAC and RAS the session keys are evaluated.  

Integration of a Trapdoor in the RSA key exchange 

M is not generated randomly but is the value of a function F. The function F and its input 
parameters have to be kept secret between the SW developer and the external third man 
(here named Carl) who wants to listen to the communication, to intercept it or to introduce 
his own data. Carl has only access to the communication wire where the SSL/TL communi-
cation takes place.  

The input parameters of F are e.g.:  

• The random numbers RAC and RAS (sent in plaintext) 

• P, a randomly generated bit string of secret length.  

• A secret string of defined length 

• Session individual parameters as time (in the client-hello message), the server 
certificate, chosen ciphersuite, version number, session ID and so on. The whole 
value of these parameters or parts of it.  

How it works  

Except of P Carl knows each input of F mentioned before. He evaluates for each value P a 
candidate M’ by the function F and afterwards the session key candidates. Then he checks if 
the session key candidates and the SSL/TLS control messages are matched.  

Diffie-Hellman and server signature 

The parameters for the key establishment in SSL/TLS are: 

RAC: 28 Byte randomly generated by the client and sent to the server.  

RAS: 28 Byte randomly generated by the server and sent to the client.  

S: Diffie-Hellman secret key randomly generated by the server. The server makes 
the Diffie-Hellman key operation => yS = gS mod p. This is sent to the client. 

C: Diffie-Hellman secret key randomly generated by the client. The client makes 
the Diffie-Hellman key operation => yC = gC mod p. This is sent to the server. 



From gCS mod p, RAC and RAS the session keys are evaluated.  

Integration of a Trapdoor in Diffie-Hellman exchange 

C is not generated randomly but is the output of a function F. The function F and its input 
parameters have to be kept secret between the SW developer and Carl. The input parameters 
of F are e.g.: 

• The random numbers yS = gS mod p, RAC and RAS (sent in plaintext) 

• P, a randomly generated bit string of secret length.  

• A secret string of defined length 

• The signature of the server (a random number sent in plaintext too!) 

• Session individual parameters as time (in the client-hello message), the server 
certificate, chosen Ciphersuite, version number, session ID and so on. 

How it works  

Except of P Carl knows each input of F (mentioned above) to calculate C. For each value P 
the function F creates a candidate “Can” for C. Then he compares gC mod p with gCan mod p. 
If both are equal, he creates the SSL/TLS session keys with RAC , RAS and gCS mod p . To 
be sure he also checks if the session keys and the SSL/TLS control messages are matched.  

Further Explanations 

As much session individual information as possible should be taken as input parameters for 
the function F to have as much entropy as possible to generate M or C. This helps to pretend 
that M and C are generated randomly and prevents collisions that could unmask the trap-
door. It would be optimal if the entropy of the function input were greater than M or C when 
generated randomly. (Entropy of input > than the bit length of M or C). 

The longer P is chosen the longer it takes to get the right keys. But it diminishes the prob-
ability of a collision and therefore of unmasking the trapdoor.  

Conditions for success 

Important conditions for success are: 

• Much entropy as possible to generate C or M to prevent any statistical collisions. 
The length of P is a trade-off between fast decryption and hiding the trapdoor. The 
best way to detect any anomalism is to make the server act in the same way (same 
random number and so on). Under these circumstances there will be a collision 
with probability greater 0.5 after about 2T trials, T ~ (¦RAC¦ + ¦P¦)/2.  
¦P¦ = the bit length of P, ¦RAC¦ = the bit length of RAC 
This is true for RSA encryption, but with Diffie-Hellman key exchange there is 
even more entropy because of the server signature. 
After the detection of a statistically unexpected collision it is still a long way how-
ever to prove that there is a trapdoor in the browser!  
Remark: After Heartbleed was published almost every server has been reconfig-
ured to the Diffie-Hellman key exchange. This has increased the entropy.  

• F should preserve the entropy. The entropy of the input is almost equal the entropy 
of the output. 



• The function F has to mask the (statistical) dependence of C and M from the SSL 
session input parameters. It may consist of hash functions and/or encryption opera-
tions. Even after B outputs for M or C one should not be able to recognize any dif-
ference from an output of B blocks for M or C by a complete random source. B 
should depend on the input entropy X. About ~ 20.5X trials must be made being 
able to detect a collision with probability 0.5. 

• F has to be obfuscated in the source code, for obfuscation techniques and princi-
ples see [CoNa]. 

• Session individual parameters, that are handled by a not trapdoored SSL/TLS 
Browser anyway, should be taken as input parameters to evaluate C or M. So the 
discovery of the trapdoor by the appearance of any strange values or operations 
could be decreased.  

• RAC should be generated randomly with high quality to pretend that M or C gen-
erated the same way too.  

• Even if the function F were discovered it would be another story to prove that 
there exist a shared secret (the function F and its input parameters) between the 
software developer and Carl.  

Conclusions 

SSL/TLS has an enormous weakness in design because the quality of the random generator 
in the browser is crucial for the SSL/TLS security. That’s why the security of the key estab-
lishment protocol must not depend on the quality of a single random generator. (So a Diffie-
Hellman key exchange with signature authentication might not meet this requirement.) This 
must be taken into account when selecting a key establishment protocol. Diffie-Hellmann 
key exchange with public key encryption authentication might be a good alternative, e.g. 
IKE chapter 5.2.  

“Not being able to find an evidence for a trapdoor is not an evidence that there isn’t any 
trapdoor.” That’s why the critical security parameters should be under control of the cus-
tomer nowadays. Interfaces that allow the customer to analyze critical security parameters 
should be built in as default.  
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